

- Is the rational function in its simplest form?
- What operations are possible in reducing to it simplest form?

8.4 Simplifying Rational Functions

* A rational expression is in simplified form if its numerator and denominator have no common factors.

Examples:

$$\frac{20}{85} = \frac{4}{17}$$

 $\frac{X^2 + 7X}{X^2} \xrightarrow{X(X+7)}_{X^*}$

8.4 Simplifying Rational Functions

Multiplying Rational Expressions

The rule for multiplying rational expressions is the same as the rule for multiplying numerical fractions: multiply numerators, multiply denominators, and write the new fraction in simplified form.

Let *a*, *b*, *c*, and *d* be expressions with $b \neq 0$ and $d \neq 0$.

Property	$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$	Simplify $\frac{ac}{bd}$ if possible.	
Example	$\frac{5x^2}{2xy^2} \cdot \frac{6xy^3}{10y}$	$=\frac{30x^{3}y^{3}}{20xy^{3}}=\frac{40\cdot 3\cdot x\cdot x^{2}\cdot y^{3}}{40\cdot 2\cdot x\cdot y^{3}}=\frac{3x^{2}}{2}$	

8.4 Simplifying Rational Functions

СЕРТ	For Your Notebook					
Dividing Rational Expressions						
ne rational expression b by the reciprocal of the	y another, multiply the first rational second rational expression.					
and <i>d</i> be expressions wit	h $b \neq 0$, $c \neq 0$ and $d \neq 0$.					
$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$	Simplify $\frac{ad}{bc}$ if possible.					
$\frac{2}{5} \div \frac{7}{3} = \frac{2}{5} \cdot \frac{3}{7} = \frac{6}{35}$						
$\frac{7}{x+1} \div \frac{x+2}{2x-3} = \frac{7}{x+1}$	$\frac{1}{1} \cdot \frac{2x-3}{x+2} = \frac{7(2x-3)}{(x+1)(x+2)}$					
	CEPT Rational Expressions The rational expression by by the reciprocal of the stand <i>d</i> be expressions with $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$ $\frac{2}{5} \div \frac{7}{3} = \frac{2}{5} \cdot \frac{3}{7} = \frac{6}{35}$ $\frac{7}{x+1} \div \frac{x+2}{2x-3} = \frac{7}{x+1}$					

Exit Ticket

Perform the indicated operation and simplify.

1)	$3x^2y^4z$	$8xy^3z$	2)	3x + 27	x^2+9x
/	$\frac{12x^4y^5z^4}{12x^4y^5z^4}$	$\overline{6xyz^6}$		5x-48	$\frac{1}{x^2-4x-32}$

HW: Page 577# 6-42 even(skip 22), 49

*Fun factoring ws